Symmetries of second order ODEs

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Invariants and invariant description of second-order ODEs with three infinitesimal symmetries. II

The second-order ordinary differential equations can have one, two, three or eight independent symmetries. Sophus Lie showed that the equations with eight symmetries and only these equations can be linearized by a change of variables. Moreover he demonstrated that these equations are at most cubic in the first derivative and gave a convenient invariant description of all linearizable equations....

متن کامل

Integrating Factors for Second-order ODEs

A systematic algorithm for building integrating factors of the form μ(x, y), μ(x, y) or μ(y, y) for second order ODEs is presented. The algorithm can determine the existence and explicit form of the integrating factors themselves without solving any differential equations, except for a linear ODE in one subcase of the μ(x, y) problem. Examples of ODEs not having point symmetries are shown to be...

متن کامل

Point equivalence of second-order ODEs: Maximal invariant classification order

We show that the local equivalence problem of second-order ordinary differential equations under point transformations is completely characterized by differential invariants of order at most 10 and that this upper bound is sharp. We also demonstrate that, modulo Cartan duality and point transformations, the Painlevé–I equation can be characterized as the simplest second-order ordinary different...

متن کامل

Symmetries of second order potential differential systems

We characterize the family of second order potential differential systems, with n degrees of freedom, via their symmetries. Firstly, we calculate explicitly the equivalence Lie algebra and the weak equivalence Lie algebra. It is shown that the equivalence Lie algebra has the dimension n + 4 + n(n− 1) 2 whereas the weak equivalence Lie algebra is infinitedimensional. The later contains strictly ...

متن کامل

Riccati-parameter solutions of nonlinear second-order ODEs

It has been proven by Rosu and Cornejo-Pérez [1, 2] that for some nonlinear second-order ODEs it is a very simple task to find one particular solution once the nonlinear equation is factorized with the use of two first-order differential operators. Here, it is shown that an interesting class of parametric solutions are easy to obtain if the proposed factorization has a particular form, which ha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2018

ISSN: 0022-247X

DOI: 10.1016/j.jmaa.2018.01.026